Пятница, 22.06.2018, 08:12

  
Персональный сайт учителя математики, информатики Никешиной Светланы Ивановны
Меню сайта
Статистика
Форма входа
Поиск

Часть 1

 

Тема 1.1 Общие сведения об операционных системах  
Операционная система (ОС) – это программа, которая обеспечивает возможность рационального использования оборудования компьютера удобным для пользователя образом. 
Что такое операционная система
Структура вычислительной системы
Из чего состоит любая вычислительная система? 
Во-первых, из того, что в англоязычных странах принято называть словом hardware, или техническое обеспечение: процессор, память, монитор, дисковые устройства и т.д., объединенные магистральным соединением, которое называется шиной. 
Во-вторых, вычислительная система состоит из программного обеспечения. Все программное обеспечение принято делить на две части: прикладное и системное. К прикладному программному обеспечению, как правило, относятся разнообразные банковские и прочие бизнес-программы, игры, текстовые процессоры и т. п. Под системным программным обеспечением обычно понимают программы, способствующие функционированию и разработке прикладных программ. Надо сказать, что деление на прикладное и системное программное обеспечение является отчасти условным и зависит от того, кто осуществляет такое деление. Так, обычный пользователь, неискушенный в программировании, может считать Microsoft Word системной программой, а, с точки зрения программиста, это – приложение. Компилятор языка Си для обычного программиста – системная программа, а для системного – прикладная. Несмотря на эту нечеткую грань, данную ситуацию можно отобразить в виде последовательности слоев (см. рис. 1.1), выделив отдельно наиболее общую часть системного программного обеспечения – операционную систему:
 
 
Рис. 1.1.  Слои программного обеспечения компьютерной системы 
 
Что такое ОС
Большинство пользователей имеет опыт эксплуатации операционных систем, но тем не менее они затруднятся дать этому понятию точное определение. Давайте кратко рассмотрим основные точки зрения.
Операционная система как виртуальная машина
При разработке ОС широко применяется абстрагирование, которое является важным методом упрощения и позволяет сконцентрироваться на взаимодействии высокоуровневых компонентов системы, игнорируя детали их реализации. В этом смысле ОС представляет собой интерфейс между пользователем и компьютером.
Архитектура большинства компьютеров на уровне машинных команд очень неудобна для использования прикладными программами. Например, работа с диском предполагает знание внутреннего устройства его электронного компонента – контроллера для ввода команд вращения диска, поиска и форматирования дорожек, чтения и записи секторов и т. д. Ясно, что средний программист не в состоянии учитывать все особенности работы оборудования (в современной терминологии – заниматься разработкой драйверов устройств), а должен иметь простую высокоуровневую абстракцию, скажем представляя информационное пространство диска как набор файлов. Файл можно открывать для чтения или записи, использовать для получения или сброса информации, а потом закрывать. Это концептуально проще, чем заботиться о деталях перемещения головок дисков или организации работы мотора. Аналогичным образом, с помощью простых и ясных абстракций, скрываются от программиста все ненужные подробности организации прерываний, работы таймера, управления памятью и т. д. Более того, на современных вычислительных комплексах можно создать иллюзию неограниченного размера оперативной памяти и числа процессоров. Всем этим занимается операционная система. Таким образом, операционная система представляется пользователю виртуальной машиной, с которой проще иметь дело, чем непосредственно с оборудованием компьютера.
Операционная система как менеджер ресурсов
Операционная система предназначена для управления всеми частями весьма сложной архитектуры компьютера. Представим, к примеру, что произойдет, если несколько программ, работающих на одном компьютере, будут пытаться одновременно осуществлять вывод на принтер. Мы получили бы мешанину строчек и страниц, выведенных различными программами. Операционная система предотвращает такого рода хаос за счет буферизации информации, предназначенной для печати, на диске и организации очереди на печать. Для многопользовательских компьютеров необходимость управления ресурсами и их защиты еще более очевидна. Следовательно, операционная система, как менеджер ресурсов, осуществляет упорядоченное и контролируемое распределение процессоров, памяти и других ресурсов между различными программами.
Операционная система как защитник пользователей и программ
Если вычислительная система допускает совместную работу нескольких пользователей, то возникает проблема организации их безопасной деятельности. Необходимо обеспечить сохранность информации на диске, чтобы никто не мог удалить или повредить чужие файлы. Нельзя разрешить программам одних пользователей произвольно вмешиваться в работу программ других пользователей. Нужно пресекать попытки несанкционированного использования вычислительной системы. Всю эту деятельность осуществляет операционная система как организатор безопасной работы пользователей и их программ. С такой точки зрения операционная система представляется системой безопасности государства, на которую возложены полицейские и контрразведывательные функции.
Операционная система как постоянно функционирующее ядро
Наконец, можно дать и такое определение: операционная система – это программа, постоянно работающая на компьютере и взаимодействующая со всеми прикладными программами. Казалось бы, это абсолютно правильное определение, но, как мы увидим дальше, во многих современных операционных системах постоянно работает на компьютере лишь часть операционной системы, которую принято называть ее ядром. 
Краткая история эволюции вычислительных систем
Первый период (1945–1955 гг.). Ламповые машины. Операционных систем нет
Второй период (1955 г.–начало 60-х). Компьютеры на основе транзисторов. Пакетные операционные системы
Третий период (начало 60-х – 1980 г.). Компьютеры на основе интегральных микросхем. Первые многозадачные ОС
Четвертый период (с 1980 г. по настоящее время). Персональные компьютеры. Классические, сетевые и распределенные системы
Следующий период в эволюции вычислительных систем связан с появлением больших интегральных схем (БИС). Наступила эра персональных компьютеров. Первоначально персональные компьютеры предназначались для использования одним пользователем в однопрограммном режиме, что повлекло за собой деградацию архитектуры этих ЭВМ и их операционных систем (в частности, пропала необходимость защиты файлов и памяти, планирования заданий и т. п.).
Компьютеры стали использоваться не только специалистами, что потребовало разработки "дружественного" программного обеспечения. 
Однако рост сложности и разнообразия задач, решаемых на персональных компьютерах, необходимость повышения надежности их работы привели к возрождению практически всех черт, характерных для архитектуры больших вычислительных систем.
В середине 80-х стали бурно развиваться сети компьютеров, в том числе персональных, работающих под управлением сетевых или распределенных операционных систем. 
В сетевых операционных системах пользователи могут получить доступ к ресурсам другого сетевого компьютера, только они должны знать об их наличии и уметь это сделать. Каждая машина в сети работает под управлением своей локальной операционной системы, отличающейся от операционной системы автономного компьютера наличием дополнительных средств (программной поддержкой для сетевых интерфейсных устройств и доступа к удаленным ресурсам), но эти дополнения не меняют структуру операционной системы. 
Распределенная система, напротив, внешне выглядит как обычная автономная система. Пользователь не знает и не должен знать, где его файлы хранятся – на локальной или удаленной машине – и где его программы выполняются. Он может вообще не знать, подключен ли его компьютер к сети. Внутреннее строение распределенной операционной системы имеет существенные отличия от автономных систем.
В дальнейшем автономные операционные системы мы будем называть классическими операционными системами.
Можно выделить шесть основных функций, которые выполняли классические операционные системы в процессе эволюции:
· Планирование заданий и использования процессора. 
· Обеспечение программ средствами коммуникации и синхронизации. 
· Управление памятью. 
· Управление файловой системой. 
· Управление вводом-выводом. 
· Обеспечение безопасности
Каждая из приведенных функций обычно реализована в виде подсистемы, являющейся структурным компонентом ОС. В каждой операционной системе эти функции, конечно, реализовывались по-своему, в различном объеме. Они не были изначально придуманы как составные части операционных систем, а появились в процессе развития, по мере того как вычислительные системы становились все более удобными, эффективными и безопасными. Эволюция вычислительных систем, созданных человеком, пошла по такому пути, но никто еще не доказал, что это единственно возможный путь их развития. Операционные системы существуют потому, что на данный момент их существование – это разумный способ использования вычислительных систем. 
Основные понятия, концепции ОС
В процессе эволюции возникло несколько важных концепций, которые стали неотъемлемой частью теории и практики ОС. 
Системные вызовы
В любой операционной системе поддерживается механизм, который позволяет пользовательским программам обращаться к услугам ядра ОС. В операционных системах наиболее известной советской вычислительной машины БЭСМ-6 соответствующие средства "общения" с ядром назывались экстракодами, в операционных системах IBM они назывались системными макрокомандами и т.д. В ОС Unix такие средства называют системными вызовами. 
Системные вызовы (system calls) – это интерфейс между операционной системой и пользовательской программой. Они создают, удаляют и используют различные объекты, главные из которых – процессы и файлы. Пользовательская программа запрашивает сервис у операционной системы, осуществляя системный вызов. Имеются библиотеки процедур, которые загружают машинные регистры определенными параметрами и осуществляют прерывание процессора, после чего управление передается обработчику данного вызова, входящему в ядро операционной системы. Цель таких библиотек – сделать системный вызов похожим на обычный вызов подпрограммы.
Основное отличие состоит в том, что при системном вызове задача переходит в привилегированный режим или режим ядра (kernel mode). Поэтому системные вызовы иногда еще называют программными прерываниями, в отличие от аппаратных прерываний, которые чаще называют просто прерываниями.
В этом режиме работает код ядра операционной системы, причем исполняется он в адресном пространстве и в контексте вызвавшей его задачи. Таким образом, ядро операционной системы имеет полный доступ к памяти пользовательской программы, и при системном вызове достаточно передать адреса одной или нескольких областей памяти с параметрами вызова и адреса одной или нескольких областей памяти для результатов вызова.
В большинстве операционных систем системный вызов осуществляется командой программного прерывания (INT). Программное прерывание – это синхронное событие, которое может быть повторено при выполнении одного и того же программного кода.
Прерывания
Прерывание (hardware interrupt) – это событие, генерируемое внешним (по отношению к процессору) устройством. Посредством аппаратных прерываний аппаратура либо информирует центральный процессор о том, что произошло какое-либо событие, требующее немедленной реакции (например, пользователь нажал клавишу), либо сообщает о завершении асинхронной операции ввода-вывода (например, закончено чтение данных с диска в основную память). Важный тип аппаратных прерываний – прерывания таймера, которые генерируются периодически через фиксированный промежуток времени. Прерывания таймера используются операционной системой при планировании процессов. Каждый тип аппаратных прерываний имеет собственный номер, однозначно определяющий источник прерывания. Аппаратное прерывание – это асинхронное событие, то есть оно возникает вне зависимости от того, какой код исполняется процессором в данный момент. Обработка аппаратного прерывания не должна учитывать, какой процесс является текущим.
Исключительные ситуации
Исключительная ситуация (exception) – событие, возникающее в результате попытки выполнения программой команды, которая по каким-то причинам не может быть выполнена до конца. Примерами таких команд могут быть попытки доступа к ресурсу при отсутствии достаточных привилегий или обращения к отсутствующей странице памяти. Исключительные ситуации, как и системные вызовы, являются синхронными событиями, возникающими в контексте текущей задачи. Исключительные ситуации можно разделить на исправимые и неисправимые. К исправимым относятся такие исключительные ситуации, как отсутствие нужной информации в оперативной памяти. После устранения причины исправимой исключительной ситуации программа может выполняться дальше. Возникновение в процессе работы операционной системы исправимых исключительных ситуаций считается нормальным явлением. Неисправимые исключительные ситуации чаще всего возникают в результате ошибок в программах (например, деление на ноль). Обычно в таких случаях операционная система реагирует завершением программы, вызвавшей исключительную ситуацию.
Файлы
Файлы предназначены для хранения информации на внешних носителях, то есть принято, что информация, записанная, например, на диске, должна находиться внутри файла. Обычно под файлом понимают именованную часть пространства на носителе информации. 
Главная задача файловой системы (file system) – скрыть особенности ввода-вывода и дать программисту простую абстрактную модель файлов, независимых от устройств. Для чтения, создания, удаления, записи, открытия и закрытия файлов также имеется обширная категория системных вызовов (создание, удаление, открытие, закрытие, чтение и т.д.). Пользователям хорошо знакомы такие связанные с организацией файловой системы понятия, как каталог, текущий каталог, корневой каталог, путь. Для манипулирования этими объектами в операционной системе имеются системные вызовы. 
Классификация ОС
Существует несколько схем классификации операционных систем. Ниже приведена классификация по некоторым признакам с точки зрения пользователя.
Реализация многозадачности
По числу одновременно выполняемых задач операционные системы можно разделить на два класса: 
· многозадачные (Unix, OS/2, Windows); 
· однозадачные (например, MS-DOS).
Многозадачный режим, который воплощает в себе идею разделения времени, называется вытесняющим (preemptive). Каждой программе выделяется квант процессорного времени, по истечении которого управление передается другой программе. Говорят, что первая программа будет вытеснена. В вытесняющем режиме работают пользовательские программы большинства коммерческих ОС. 
В некоторых ОС (Windows 3.11, например) пользовательская программа может монополизировать процессор, то есть работать в невытесняющем режиме. Как правило, в большинстве систем не подлежит вытеснению код собственно ОС. Ответственные программы, в частности задачи реального времени, также не вытесняются. 
По приведенным примерам можно судить о приблизительности классификации. Так, в ОС MS-DOS можно организовать запуск дочерней задачи и наличие в памяти двух и более задач одновременно. Однако эта ОС традиционно считается однозадачной, главным образом из-за отсутствия защитных механизмов и коммуникационных возможностей. 
Поддержка многопользовательского режима
По числу одновременно работающих пользователей ОС можно разделить на: 
· однопользовательские (MS-DOS, Windows 3.x); 
· многопользовательские (Windows NT, Unix). 
Наиболее существенное отличие между этими ОС заключается в наличии у многопользовательских систем механизмов защиты персональных данных каждого пользователя.
Многопроцессорная обработка
Вплоть до недавнего времени вычислительные системы имели один центральный процессор. В результате требований к повышению производительности появились многопроцессорные системы, состоящие из двух и более процессоров общего назначения, осуществляющих параллельное выполнение команд. Поддержка мультипроцессирования является важным свойством ОС и приводит к усложнению всех алгоритмов управления ресурсами. Многопроцессорная обработка реализована в таких ОС, как Linux, Solaris, Windows NT, и ряде других.
Многопроцессорные ОС разделяют на симметричные и асимметричные. В симметричных ОС на каждом процессоре функционирует одно и то же ядро, и задача может быть выполнена на любом процессоре, то есть обработка полностью децентрализована. При этом каждому из процессоров доступна вся память.
В асимметричных ОС процессоры неравноправны. Обычно существует главный процессор (master) и подчиненные (slave), загрузку и характер работы которых определяет главный процессор.
Системы реального времени
В разряд многозадачных ОС, наряду с пакетными системами и системами разделения времени, включаются также системы реального времени, не упоминавшиеся до сих пор.
Они используются для управления различными техническими объектами или технологическими процессами. Такие системы характеризуются предельно допустимым временем реакции на внешнее событие, в течение которого должна быть выполнена программа, управляющая объектом. Система должна обрабатывать поступающие данные быстрее, чем они могут поступать, причем от нескольких источников одновременно.
Столь жесткие ограничения сказываются на архитектуре систем реального времени, например, в них может отсутствовать виртуальная память, поддержка которой дает непредсказуемые задержки в выполнении программ. 
Приложение 1.
Некоторые сведения об архитектуре компьютера
Основными аппаратными компонентами компьютера являются: основная память, центральный процессор и периферийные устройства. Для обмена данными между собой эти компоненты соединены группой проводов, называемой магистралью.
Основная память используется для запоминания программ и данных в двоичном виде и организована в виде упорядоченного массива ячеек, каждая из которых имеет уникальный цифровой адрес. Как правило, размер ячейки составляет один байт. Типовые операции над основной памятью – считывание и запись содержимого ячейки с определенным адресом. 
Выполнение различных операций с данными осуществляется изолированной частью компьютера, называемой центральным процессором (ЦП). ЦП также имеет ячейки для запоминания информации, называемые регистрами. Их разделяют на регистры общего назначения и специализированные регистры. В современных компьютерах емкость регистра обычно составляет 4–8 байт. Регистры общего назначения используются для временного хранения данных и результатов операций. Для обработки информации обычно организовывается передача данных из ячеек памяти в регистры общего назначения, выполнение операции центральным процессором и передача результатов операции в основную память. 
Специализированные регистры используются для контроля работы процессора. Наиболее важными являются: программный счетчик, регистр команд и регистр, содержащий информацию о состоянии программы.
Программы хранятся в виде последовательности машинных команд, которые должен выполнять центральный процессор. Каждая команда состоит из поля операции и полей операндов, то есть тех данных, над которыми выполняется данная операция. Весь набор машинных команд называется машинным языком.
Выполнение программы осуществляется следующим образом. Машинная команда, на которую указывает программный счетчик, считывается из памяти и копируется в регистр команд. Здесь она декодируется, после чего исполняется. После выполнения команды программный счетчик указывает на следующую команду. Эти действия, называемые машинным циклом, затем повторяются.
Взаимодействие с периферийными устройствами
Периферийные устройства предназначены для ввода и вывода информации. Каждое устройство обычно имеет в своем составе специализированный компьютер, называемый контроллером или адаптером. Когда контроллер вставляется в разъем на материнской плате, он подключается к шине и получает уникальный номер (адрес). После этого контроллер осуществляет наблюдение за сигналами, идущими по шине, и отвечает на сигналы, адресованные ему. 
Любая операция ввода-вывода предполагает диалог между ЦП и контроллером устройства. Когда процессору встречается команда, связанная с вводом-выводом, входящая в состав какой-либо программы, он выполняет ее, посылая сигналы контроллеру устройства. Это так называемый программируемый ввод-вывод.
В свою очередь, любые изменения с внешними устройствами имеют следствием передачу сигнала от устройства к ЦП. С точки зрения ЦП это является асинхронным событием и требует его реакции. Для того чтобы обнаружить такое событие, между машинными циклами процессор опрашивает специальный регистр, содержащий информацию о типе устройства, сгенерировавшего сигнал. Если сигнал имеет место, то ЦП выполняет специфичную для данного устройства программу, задача которой – отреагировать на это событие надлежащим образом (например, занести символ, введенный с клавиатуры, в специальный буфер). Такая программа называется программой обработки прерывания, а само событие прерыванием, поскольку оно нарушает плановую работу процессора. После завершения обработки прерывания процессор возвращается к выполнению программы. Эти действия компьютера называются вводом-выводом с использованием прерываний.
В современных компьютерах также имеется возможность непосредственного взаимодействия между контроллером и основной памятью, минуя ЦП, – так называемый механизм прямого доступа к памяти.
 
Календарь
«  Июнь 2018  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
252627282930
Друзья сайта
  • МОУ ООШ №4
  • Федеральный институт педагогических измерений
  • Федеральный портал «Российское образование»
  • МОУ ДПО "Информационно- методический центр города Белово"
  • Copyright MyCorp © 2018

    Конструктор сайтов - uCoz